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This interdisciplinary study,which combinesmachine learning, statisticalmethodologies, high-fidelity simulations,

projection-based model reduction, and flow physics, demonstrates a new process for building an efficient surrogate

model to predict spatiotemporally evolving flowdynamics for design survey. In ourpreviouswork, a commonproper-

orthogonal-decomposition (CPOD) technique was developed to establish a physics-based surrogate (emulation)

model for prediction of useful flow physics and design exploration over a wide parameter space. The emulation

technique is substantially improved upon here using a kernel-smoothed POD (KSPOD) technique, which leverages

kriging-basedweighted functions from the designmatrix. The resultant emulationmodel is then trained using a large-

scale dataset obtained through high-fidelity simulations. As an example, the flow evolution in a swirl injector is

considered for a wide range of design parameters and operating conditions. The KSPOD-based emulation model

performs well and can faithfully capture the spatiotemporal flow dynamics. The model enables effective design

surveys using high-fidelity simulation data, achieving a turnaround time for evaluating new design points that is

42,000 times faster than the original simulation.

Nomenclature

Ain = total inlet area
An = cross-sectional area
c = design setting (parameter set)
D = Sobol response variance over design range
f = flow property
h = liquid film thickness at injector exit
K = geometric constant
L = injector length
p = design parameters
R = Gaussian correlation function
Rn = injector radius
T = temperature
t = time
w = kriging weighing number
x = spatial coordinate
Z = zero-mean Gaussian process
α = liquid film spreading angle at injector exit
βj = time-varying coefficients
δ = inlet slot width
ΔL = distance between injector inlet and headend
μ = mean
ϕj = spatial basis functions
ρ = density
θ = tangential inlet angle

Subscripts

n = number of simulations
u = subset of design parameters u ⊆ f1; : : : ; pg

I. Introduction

T HE purpose of this work is to develop an efficient surrogate
model (emulator) for prediction of spatiotemporally evolving

flow dynamics. The study involves computational fluid dynamics
(CFD), projection-based reduced modeling, statistics, and machine
learning. As a demonstration case, the flow evolution in a swirl
injector is presented. In recent years, machine learning algorithms
have been developed and applied to improve the model accuracy and
efficiency for predicting turbulent flow dynamics. For example, Ling
and colleagues identified regions of highReynolds-averagedNavier–
Stokes (RANS) uncertainty [1] and subsequently improved the
prediction of Reynolds stress anisotropy for this type of flows [2].
Duraisamy et al. developed a paradigm for data-driven modeling of
turbulent flows using a machine-learning technique [3,4]. These
works initiated efforts to incorporate data science into the study of
fluid dynamics.
For design assessment, physical experiments can be extremely

expensive and time-consuming, especially for complex systems
operating over awide range of conditions.Moreover, it is hard to gain
insight into underlying physicochemical mechanisms through
measurements using currently available experimental techniques. To
better capture flow characteristics and identify design attributes, one
solution is high-fidelitymodeling and simulations such as large-eddy
simulation (LES). The LES framework employed in the present work
is capable of dealing with fluid flow and combustion dynamics over
the entire range of thermodynamic states [5–9]. These simulations,
however, are computationally expensive and impractical for use as a
primary tool to survey the entire design space; an axisymmetric
simulation of flow evolution in a simplex swirl injector usingLES, for
instance, may take about 100,000 CPU hours on the hexa-core AMD
Opteron Processor 8431. The traditional trial-and-error–based design
practice is no longer practical.
To enable the use of high-fidelity simulations for design

evaluation, an effective emulation (surrogate) model must be
incorporated into the design process [10–12]. The procedure takes a
few steps. First, design of experiments (DoE), which achieves more
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realistic computation timelines for building a database, is
implemented. Here we consider a swirl injector as a demonstration
example [13], as shown schematically in Fig. 1. The detailed flow
characteristics have been previously explored using LES techniques
[14,15]. DoE can be formulated based on several key geometric
parameters and their respective ranges of consideration. The present
study focuses on the effects of these geometric parameters (i.e.,
location and width of the tangential entry and injection angle) on the
injector performance, as measured by the thickness and spreading
angle of the liquid film at the exit of the injector [10,12–15]. The total
sample size is determined using a 10d rule-of-thumb described by
Loeppky et al. [16], which recommends 10 simulations per design
parameterwhere dmeans the total number of design parameters. This
approach substantially reduces the number of total sample points
required to survey the design space.
The second step is the creation of a database with sufficient

information to allow for a survey of the design space. This can be
achieved by performing LES-based high-fidelity simulations at the
selected design points from DoE. For spatiotemporally evolving
flows, however, the resulting database is too large to be handled
effectively. Identification of dominant flow structures and reduction
of the “big data” becomes essential for building the emulation model
[10]. To this end, a projection-based approach [17], proper
orthogonal decomposition (POD) technique, is adopted to extract
these coherent structures into a reduced set of orthogonal basis
functions.
The final step requires the combination of POD and kriging

methodologies. Kriging, regarded as a parametric, data-fitted
surrogate model, is a powerful machine-learning tool for
interpolation and prediction [18]. The concept of kriging is to model
unobserved responses using a Gaussian process (GP) governed by a
preset covariance function. The response surface of the training
model can be evaluated via data-tuned weights to radial basis
functions centered at observed points. In the present study, each
simulation contains 380,928 numerical grid points in the spatial
domain. Kriging is required for each point if information for each
point is to be modeled. To reduce the data size, POD [19] has been
incorporated into the prediction model (emulator).
In our previous work [11,12], common-grid POD (CPOD) was

implemented to build an emulation model. The method successfully
predicts mean flow structures in swirl injectors with a broad range of
geometric dimensions. To improve the prediction accuracy of flow
evolution in the entire spatial domain and associated flow dynamics,
Kernel-smoothed POD (KSPOD) is proposed here. Two main
assumptions must be addressed. First, the physics extracted by POD
modes in different cases are similar under the same rank, as
determined by the POD energy. Second, the dominant modes
capturing similar physics are transferred with similar phase and these
physics are retained through the kriging-weighted averaging based
on the new design. KSPOD achieves three goals: 1) capturing
turbulent flow dynamics; 2) predicting results as verified through
quantitative comparisons with simulation results; 3) yielding
predictions with short turnaround times. The KSPOD-based
emulator requires only about 0.02 CPU hour to predict the flowfield
at a new design point for the problem presented in the present study.
The overall computation time, including data loading and training, is
about 25 CPU hours to predict the flow evolution at a new design
point for a time duration of 10 ms with 1000 snapshots. For
comparison, the corresponding LES calculation takes about 100,000
CPU hours for a spatial domain of 380,928 numerical grid points.

Thework described in this paper produces a high-fidelity surrogate
modeling technique for efficient prediction of complex flowfields
over a broad range of operating conditions and geometric parameters.
The paper is structured as follows. Section II introduces the swirl
injector configuration, sample points designated by the DoE, the
numerical framework, the emulation model, and the overall design
process. Section III discusses the simulation and emulation results.
The emulator is systematically assessed based on performance
metrics, relative error, and spectral information on simulated and
predicted flowfields. Section IV concludes with directions for
future work.

II. Methodology

A. Swirl Injector Configuration

Figure 1 shows a schematic of the swirl injector of concern. Liquid
oxygen (LOX) is tangentially introduced into the injector and
develops a swirling film that is attached to the wall due to centrifugal
force [14,20]. Conservation of angularmomentum results in a hollow
gaseous core in the center region.The liquid filmexits the injector as a
thin conical sheet and subsequently undergoes atomization into
droplets. The flow dynamics in this type of device under supercritical
conditions have been extensively studied using LES tech-
niques [15,16].
The selection of design variables is dependent on system

requirements. In our previous studies [11–13], the design consisted of
five parameters: injector length, L; injector radius, Rn; tangential
inlet width, δ; tangential injection angle, θ; and distance between the
center of inlet and headend, ΔL. The sample points were chosen
based on the maximum projection (MaxPro) [21] technique across a
broad design space. The injector length covers a range of 22–93 mm.
Sensitivity analysis is used to identify themost significant parameters
dictating injector performance. Our previous work [11] shows that
the injection width (δ) is the most important parameter in the
determination of the spreading angle of the liquid film. The tangential
inlet angle (θ) and the injection width (δ) significantly affect the
liquid film thickness,whereas the injector lengthL and radiusRn play
minor roles. Thus, the present work focuses on the injection width δ,
and angle θ, and the distance between the inlet and headend ΔL.
Table 1 tabulates the baseline geometry and operating conditions,

including the LOX inlet temperature Tin, ambient temperature T∞,
ambient pressurep∞, andmass flow rate _m. Another parameter is the
geometric constant K, a nondimensional parameter that can be used
to evaluate the flow characteristics of swirl injectors, namely, the
liquid film thickness and spreading angle. The former controls film
atomization and the latter mixing efficiency [14]. The geometric
constant takes the following definition:

K � AnRin∕AinRn (1)

whereAn denotes the cross-sectional area of the injection exit andAin

the total inlet area. The geometric constant is an indicator of the swirl
strength. When the value is high, a large angular momentum is
present in the liquid film, leading to a wide spreading angle. The
liquid film thickness and spreading angle must be defined carefully.
At subcritical pressure, a distinct interface exists between the liquid
and gas phases. At supercritical pressure, however, density decreases
smoothly as the fluid transits from liquid to its supercritical state. A
pseudo-boiling point, where themaximumdensity gradient occurs, is
used to characterize the interface. The thickness and spreading angle
of the liquid film at the injector exit are thus measured based on the
location of the maximum density gradient in the present study [15].
Table 2 shows the design space and the range for each design

variable. The distance between the inlet and headend,ΔL, is decided
by a rule of thumb to be 1.5–2.0 times the injector width [14]. This is

Fig. 1 Schematic of swirl injector.

Table 1 Baseline geometry and operating conditions

R, mm Rin, mm L, mm _m, kg∕s Tin, K T∞, K p∞, MPa

4.50 0.85 25 0.17 120 300 10
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an optimal location determined from a tradeoff study to avoid 1)

excessive viscous losses when the injection slit is too close to the

headend and 2) low-frequency oscillations due to the presence of a

large recirculation zone if the inlet is too far from the headend. The

design space of injectionwidth δ and angle θ is decided by the desired
range of spreading angle (50°–62°) and film thickness (0.66–

1.50mm).With these numbers and the geometric constant, the ranges

of δ and θ can be estimated.

B. High-Fidelity Simulation

The theoretical formulation for high-fidelity simulations, which

treats supercritical fluid flows and combustion over the entire range

of fluid thermodynamic states of concern, is described in detail in

[7,8]. Turbulence closure is achieved by means of LES techniques.

The effects of subgrid-scale motion are represented by an improved

Smagorinsky eddy-viscosity model. Thermodynamic properties are

evaluated according to fundamental thermodynamics theories and a

modified Soave–Redlich–Kwong (SRK) equation of state (EOS).

The Takahashi method calibrated for high-pressure conditions is

employed to obtain the mass diffusivity. Transport properties are

evaluated using extended corresponding-state principles.

The numerical framework is based on a preconditioning scheme

with a unified treatment of general-fluid thermodynamics [22,23]. It

applies a density-based, finite-volume methodology, along with a

dual-time-step integration technique [24]. A second-order backward

difference is used to accomplish temporal discretization, and a four-

step Runge–Kutta scheme is applied to integrate the inner-loop

pseudo-time term. A fourth-order central difference scheme in

generalized coordinates is used to obtain spatial discretization.

Fourth-order matrix dissipation is taken to assure numerical stability

and minimum contamination of the solution. Lastly, a multiblock

domain decomposition technique associated with the message

passing interface technique for parallel computing is applied to

optimize computation speed.

Owing to the demanding computational requirements of three-

dimensional simulations, only a cylindrical sector of the swirl

injector is considered in the simulations, with periodic boundary

conditions specified in the azimuthal direction. At the LOX inlet, an

acoustically nonreflecting boundary condition is implemented [25].

At the downstream boundary of the computational domain, sponge

layers are employed in both the axial and radial directions to prevent

the reflection of numerical disturbances [26]. All solid walls are

assumed to be adiabatic, and no-slip conditions are enforced.

The theoretical/numerical framework has previously been

validated against a variety of supercritical fluid flow problems

[15,27–30]. To minimize numerical uncertainty, a grid-convergence

study was performed for the baseline design. Three different grid

levels were considered, with a refinement ratio of two in each

direction. In consideration of computational accuracy and efficiency,

the intermediate grid with 380,928 finite-volume cells (184,320 in

the injector and 196,608 in the downstream region) is selected for all

the computations in the present study. The time step is fixed at

2.0 × 10−7 s for temporal accuracy. The local Courant-Friedrichs-

Lewy number varies in the range of 0.1–0.7, depending on local flow

velocities and grid sizes. Each LES calculation takes about 100,000

CPU hours on the hexa-core AMDOpteron Processor 8431 to obtain

statistically significant data. The simulation data are recorded over a

physical time span of 10 ms, after the flowfield has reached its fully

developed state. A total of 1000 snapshots with a time interval of

10 μs are collected for each case. According to the Nyquist criterion,
a frequency resolution of 50 kHz is achieved for the collected data set,

covering all important characteristic frequencies of flow dynamics in

the present swirl injector.

C. Design of Experiments

The DoE methodology is a statistical approach for careful
selection of input variables for a given design space. DoE facilitates
the design process and reduces the number of total sample points
required to efficiently explore the design space. With prior
knowledge of the major contributing geometric parameters, the
sample size is determined based on the 10d rule-of-thumb [17],
where d denotes the total number of design parameters. The present
study considers three design variables (θ, δ, and ΔL). Although
MaxPro provides good space-filling properties on both the design
space and its projections [21], MaxPro does not provide a sequential
design capability, giving optimal space-filling performance in
batches. To that end, sliced Latin hypercube design (SLHD) [31–33]
is selected. In SLHD, the space-filling performance of the design
points in each slice is optimal. The overall designmatrix contains five
slices, and each slice includes six design points. Figure 2 shows the
two-dimensional projections of the design points categorized by
different slices. Each case takes about 100,000 CPU hours for high-
fidelity simulation to obtain statistically significant data. A total of
1000 snapshots spanning 10 ms are acquired after the flowfield
reaches its stationary state (∼12 ms). The snapshots are subsampled
every 20 temporal iterations, each with a time step of 0.5 μs. A
temporal resolution of 50 kHz is achieved, according to the Nyquist
criterion.

D. Kernel-Smoothed POD

This section introduces kernel-smoothed proper orthogonal
decomposition (KSPOD), which combines statistical modeling with
a projection-basedmethod to obtain a reduced-basis surrogatemodel.
The proposed KSPOD method can be viewed as a generalization of
the POD used for flow emulation. POD decomposes the flowfield
into an expansion consisting of spatial eigenfunctions, known as
POD modes, and corresponding time-varying coefficients. Such a
decomposition can be written in the following form:

f�u; t� ≈
XK
k�1

βk�t�ϕk�u� (2)

where f�u; t� is the simulated flowfield at spatial location u and time
t, andβk�t� andϕk�u� represent the time-varying coefficient and basis
function for the kth mode, respectively. As indicated in Eq. (2), the

Table 2 Design space

Design variable θ, deg δ, mm ΔL, mm

Design range 35.0–62.2 0.27–1.53 0.85–3.40

Fig. 2 Two-dimensional projection of design points obtained by sliced
Latin hypercube design methodology in the design space.
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expansion is truncated with the firstK terms, whereK is chosen such
that the reconstructed flowfield retains a desired degree of accuracy.
In practice, the time-varying coefficients and basis functions are
obtained through an eigen-decomposition of the inner product of a
flowfield variable [19]. Equation (2) can be viewed as the optimal
decomposition of f�u; t� using a basis expansion of K terms.
From a physics perspective, POD provides valuable insight into

the important physics present in the flowfield. The basis function, or
mode shape, ϕk�u� can be interpreted as spatial distribution of the
fluctuation field of a given flow variable (such as pressure, density,
temperature, and velocity components). It represents the dominant
coherent structure, such as acoustic waves in the system [34]. A
spectral analysis of the POD coefficients can be performed to identify
flow periodicity and characteristic frequencies for hydrodynamic and
acoustic instabilities. The index for the basis-function expansion in
Eq. (2) is determined by the rank of the energy content in the eigen-
decomposition calculation and suggests which flow structure is more
prevalent. The first few terms in the expansion represent more
energy-containing structures, and the remaining terms represent
increasingly weaker flow features.
The goal here is to employ the flow features extracted using POD

within a statistical framework, allowing the training of an emulator
for flow prediction. To this end, we employ a machine-learning
technique called Gaussian process regression, also known as kriging,
to predict both POD modes and time-varying coefficients at a new
design setting. We begin with a brief introduction into the
mathematical formulation behind kriging, and then describe how
such a model is incorporated into the KSPOD framework.
Kriging is a powerful learning technique that leverages a Gaussian

process regression model to learn the structure of an unknown
function by sampling this function at specific points. The
mathematical framework for kriging is established as described in
[35,36]. We assume that the unknown function of interest (i.e., POD
modes and time-varying coefficients at a new design point in the
present study), Y�x�, x ∈ Rd, is a realization from the stochastic
process

Y�x� � μ� Z�x� (3)

where x is a d-dimensional vector, μ is the mean of the process, and
Z�x� is a zero-mean Gaussian process with VarfZ�x�g � σ2 and
correlation function

Corr�Z�xi�; Z�xj�� � R�xi; xj� (4)

whereR�xi; xj� denotes the correlation between the randomvariables
Z�xi� and Z�xj�. Following common practice [37], we employ the
squared-exponential correlation function:

R�xi; xj� � exp

�
−
Xd
k�1

θk�xik − xjk�2
�

(5)

where xik is the kth element of xi and θ the correlation parameter
tuned by maximum-likelihood estimation.
A key advantage of kriging is that a closed-form expression can be

obtained for predicting the unknown function Y�x� at unobserved

locations. Suppose that the function of interest Y is observed at the
design setting fxigni�1; the observation vector then becomes
y � �Y�x1�; : : : ; Y�xn��T . Having observed y, the conditional mean
of the process at a new point xnew is given by:

Ŷ�xnew� � E�Y�xnew�jy� � μ̂� rTR−1�y − 1nμ̂� (6)

where μ̂ � 1TnR
−1y∕1TnR−11n is the estimated value of μ, and 1n is an

n-vector of 1’s. Here, R is an n × n matrix whose �i; j�th entry is
R�xi; xj�, and r is an n-vector whose ith entry is R�xnew; xi�. A more
detailed derivation of Eq. (6) can be found in [38,39].
While the predictor in Eq. (6) is easy to evaluate when the desired

function Y is a scalar function, it becomes much more difficult to
evaluate for the problem at hand, where the desired function involves
spatiotemporal evolution. For example, in the present study of
swirling flow dynamics, there are 380,928 grid points and 1000 time
steps for each simulation case. Performing kriging for each grid point
and time step would be impractical and time-consuming. From a
statistical perspective, the use of separate kriging models over each
grid point and time step also leads to a serious problem of over-
parameterization (as each model requires d correlation parameters),
which then results in poor prediction performance of the trained
model. In light of these challenges and inspired by the fact that the
numerical grid system remains the same for all simulated cases, we
introduce an improved kriging-based model that combines the POD
information from each design setting in the form of a “weighting
parameter,” named as KSPOD.
The key idea in KSPOD is to apply the kriging equation, Eq. (6), to

predict the weight of each POD mode at observed points on a new
design setting. To this end, the observations y are now taken to be the
unit vector ei, where ei is an n-vector with 1 in its ith element and 0
elsewhere. Intuitively, this quantifies the fact that the POD
information extracted in the ith design setting corresponds to only
that setting and not the other n − 1 settings. With this in mind, the
resulting predictor in Eq. (6) can then be viewed as the predicted
weight for that particular POD term at a new design setting xnew,
denoted as ŵnew;i This procedure is repeated for each of the n unit
vectors �ei�ni�1, from which the n weighting parameter �ŵnew;i�ni�1

can be obtained. They are subsequently used to predict the new POD
modes and coefficients through a weighted average of the extracted
modes and coefficients at the new design settings.
It is worth noting that the KSPOD methodology is an emulation

technique, not a new POD method or another data decomposition
method. The modes derived from KSPOD weighting parameters are
not real POD modes, but a set of spatial functions (i.e., KSPOD
spatial function) resulting from kriging. In other words, KSPODuses
a kriging-motivated weighing of modes for the goal of statistical
prediction to approach the spatial functions for data reconstruction.
The idea of weighting parameter is an accommodation that delivers
efficient and effective estimation for the emulation model. Further
details of weighting parameters are stated in the Appendix.
The algorithm in Table 3 outlines the detailed steps in the KSPOD

algorithm. First, POD is performed for each simulated case to extract
coherent structures. Next, the coefficients of POD modes are trained
by ordinary krigingmodels using theGaussian kernel in Eq. (5) as the
correlation function, with the correlation parameter θ tuned using
maximum-likelihood estimation, as implemented in the R package

Table 3 Algorithm of KSPOD

ALGORITHM: Kernel-smoothed POD
Data: For each design setting in fxigni�1, provide the flow evaluation at each spatial location and time-step f�xi; uj; tq�, where fujgJj�1

is the spatial location
and ftqgmq�1

is the time-step.
Training: Step 1: For each design setting xi, perform a POD and write it as f�xi; uj; tq� �

P
K
k�1 β

k�xi; tq�ϕk�xi; uj�.
Step 2: For each time-step tq and each mode k, perform an ordinary kriging procedure on fβk�x1; tq�; : : : ; βk�xn; tq�g with inputs fx1; : : : ; xng.

The predictive function at an untried setting xnew is β̂k�xnew; tq�.
Step 3: For i � 1; : : : ; n, performan ordinary kriging procedure onei with inputs fx1; : : : ; xng. The predictive function at an untried settingxnew is

ŵi�xnew�.
Therefore, for each spatial location uj and each mode k, the predictive KSPOD spatial function from ϕk�xnew; uj� is
ϕ̂k�xnew; uj� �

P
n
i�1 ŵi�xnew�ϕk�xi; uj�∕

P
n
i�1 ŵi�xnew�.

Prediction: At an untried setting xnew, reconstruct f̂�xnew; uj; tq� by f̂�xnew; uj; tq� �
P

K
k�1 β̂

k�xnew; tq�ϕ̂k�xnew; uj�, where j � 1; : : : ; J and q � 1; : : : ; m.
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“GPfit” [37]. The predictive function can be constructed based on

Eq. (6). The weighting parameters are also trained using the

procedure described above. Finally, the PODmodes and coefficients

are predicted, and are used to “reconstruct” the flowfield at the new

design setting xnew.

As in any physical or statistical model, there are implicit
assumptions. First, by predicting the ith POD term of the new design
setting using only the information for the ithPOD terms extracted from
observed design settings, we assume the ranking of the extracted flow
physics from POD [corresponding to the rank of its corresponding
expansion term in Eq. (2)] to be invariant over different geometry
settings. In other words, the flow feature for the first POD mode
corresponds to the same coherent structure over all n simulated design
settings. The sameholds true for the subsequentmodes. Second, for the
methodology to work, design settings whose dominant POD modes
capture similar physics and dynamics should be clustered together for
training. As information can be damped or even diminished during the
training process, clustering the data and using cases with similar phase
content can mitigate the problem.
The method is termed kernel-smoothed POD, because the kriging

here does not apply the weighting parameter ŵnew;i directly to the
flowfield. The flow structures within the flowfield are a combination
of waves with different frequencies, amplitudes, and phases. If the
weighting parameter is used on the flowfield directly, the two datasets
may cancel each other during the regression process, thereby losing
useful information. The phase difference can be observed in POD
modes as well. Application of weighting functions to POD modes
with a kernel-smoothed algorithm can avoid the phase cancellation
and retain important flow physics.
Once the KSPOD emulator is trained, it can be used to predict the

flow evolution at a new design point. The computational cost is
reduced by several orders of magnitude. For the demonstration case
in the present study, high-fidelity simulations take around 100,000
CPU hours for each case. The trained model can evaluate a new
flowfield with 1000 snapshots in 0.02 CPU hours.

III. Results and Discussion

A. High-Fidelity Simulation Results

The LES-based high-fidelity numerical framework described
earlier was implemented for the 30 cases selected by SLHD for the
three design parameters, which are decided by the sensitivity analysis
using a first-order Monte Carlo estimation of Sobol indices [13]. The
sensitivity analysis was performed based on the desired liquid-film
thickness and spreading angle. The three chosen parameters are
significantly influenced by the inlet velocity, uin, which ranges from

Table 4 Design matrix and associated inlet velocity information

Case δ,
mm

θ,
deg

ΔL,
mm

uin,
m∕s

ur,
m∕s

uθ ,
m∕s K Cluster

1 0.28 57.92 1.59 40.43 21.47 34.26 7.44 D
2 0.63 40.81 1.93 12.35 9.35 8.07 1.64 B
3 0.82 52.39 0.96 11.79 7.20 9.34 1.98 B
4 1.10 32.76 2.57 6.42 5.40 3.47 0.69 A
5 1.12 51.88 3.21 8.58 5.30 6.75 1.43 A
6 1.52 46.85 2.23 5.71 3.90 4.16 0.86 A
7 0.38 37.29 1.64 19.53 15.54 11.83 2.37 C
8 0.51 52.89 2.15 19.35 11.67 15.43 3.27 C
9 0.78 43.33 3.12 10.43 7.58 7.15 1.46 B
10 1.03 33.76 0.87 6.89 5.73 3.83 0.76 A
11 1.26 49.37 1.72 7.19 4.68 5.46 1.14 A
12 1.39 60.44 2.61 8.63 4.26 7.51 1.65 A
13 0.47 54.40 2.74 21.87 12.73 17.78 3.80 C
14 0.68 38.80 2.53 11.25 8.77 7.05 1.42 B
15 0.74 48.36 1.89 12.06 8.02 9.02 1.88 B
16 0.93 33.26 1.47 7.63 6.38 4.18 0.83 A
17 1.22 42.82 0.91 6.60 4.84 4.49 0.92 A
18 1.35 57.42 3.17 8.15 4.39 6.87 1.49 A
19 0.32 58.43 2.27 35.58 18.63 30.31 6.60 D
20 0.59 34.77 1.13 12.19 10.01 6.95 1.38 B
21 0.84 49.87 2.83 10.89 7.02 8.32 1.74 B
22 0.99 44.33 1.76 8.35 5.97 5.84 1.20 A
23 1.20 37.79 3.08 6.24 4.93 3.82 0.77 A
24 1.45 55.41 1.55 7.17 4.07 5.90 1.27 A
25 0.40 36.28 2.32 18.27 14.73 10.81 2.16 C
26 0.49 51.38 1.42 19.51 12.18 15.24 3.21 C
27 0.72 53.39 3.29 13.84 8.25 11.11 2.36 B
28 0.95 40.31 1.17 8.18 6.24 5.29 1.07 A
29 1.24 59.43 1.98 9.36 4.76 8.06 1.76 A
30 1.37 43.83 2.78 5.99 4.32 4.15 0.85 A

Note: Cases 1–6 are on slice 1, cases 7–12 on slice 2, cases 13–18 on slice 3, cases 19–24

on slice 4, and cases 25–30 on slice 5, corresponding to the symbols on Fig. 2.

Fig. 3 Snapshots of density field in different clusters at t � 1.21 ms, obtained from LES-based high-fidelity simulations.
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5.71 to 40.43 m∕s as listed in Table 4. The 30 training cases are

roughly classified into four groups in terms of uin (m/s) as follows:

cluster Awith uin < 10; cluster B with 10 ≤ uin < 18; cluster C with

18 ≤ uin < 25; and cluster D with uin > 25.

Overall, there are 15 cases in cluster A, 8 in cluster B, 5 in cluster C,

and 2 in cluster D. Figure 3 shows two sample snapshots of the

density field for each cluster. Variations of film thickness and

spreading angle are observed. Cluster A has the slowest inlet velocity

and generates thicker film and smaller spreading angle. The film

thickness decreases and the spreading angle increases between

clusters B and C; the smallest film thickness and largest spreading

angle appear in cluster D, where there is the highest inlet velocity.

As mentioned earlier, the geometric constant K is an indicator of

swirl strength, with a higher value implying stronger azimuthal

Fig. 4 Pressure POD modes 1, 2, and 3 for cases 9 and 21 from cluster B.

Fig. 5 Energy accumulation of density POD modes.

Fig. 6 Comparison of density field between LES-based simulation and prediction by KSPOD-based emulation. Test case A1.

Table 5 Design parameters for eight test cases in four different
clusters

Case δ, mm θ, deg ΔL, mm uin, m∕s ur, m∕s uθ , m∕s Cluster

A1 1.26 44.11 0.94 6.55 4.70 4.56 A
A2 1.20 41.97 0.90 6.65 4.94 4.44 A
B1 0.70 40.73 2.71 11.12 8.43 7.26 B
B2 0.71 52.59 3.24 13.79 8.38 10.95 B
C1 0.42 37.73 2.41 17.91 14.16 10.96 C
C2 0.49 57.12 2.88 22.33 12.12 18.75 C
D1 0.27 50.39 1.40 34.37 21.91 26.48 D
D2 0.33 60.76 2.32 36.32 17.74 31.70 D
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momentum. When K becomes small, the swirling flow does not

contain enough azimuthal momentum to produce a large spreading

angle of the liquid film. This suggests thatK plays a pivotal role, with

a slight change causing significant differences in flow dynamics.

Therefore, the training process must preserve important flow physics

during data reduction.

B. Prediction by KSPOD-Based Emulation

Figure 4 compares the first three pressure POD modes between
cases 9 and 21 in cluster B.Mode 1 is an ensemble of the longitudinal
modes of the hydrodynamic instability. In both cases, the injector
length is fixed at 25 mm, and the longitudinal hydrodynamic wave
speed in the liquid film is estimated to be 7–9 m∕s [14–16,40]. This

Table 6 Weighting parameters from of POD modes for case A1

Case 1 2 3 4 5 6 7 8 9 10

Cluster D B B A A A C C B A
Weighting parameter −0.01% 0.50% 2.13% 0.82% −4.24% 0.02% 0.00% 0.12% 0.04% −2.18%
Case 11 12 13 14 15 16 17 18 19 20
Cluster A A C B B A A A D B
Weighting parameter 2.17% −0.03% 0.16% 0.18% −0.13% 0.00% 91.77% −0.17% −0.04% −0.08%
Case 21 22 23 24 25 26 27 28 29 30
Cluster B A A A C C B A A A
Weighting parameter 0.16% −2.50% 0.20% −0.13% 0.05% 0.01% 0.00% −2.28% 0.08% 13.37%

Fig. 7 Comparison of density field between LES-based simulation and prediction by KSPOD-based emulation.
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leads to a characteristic frequency of 0.32–0.45 kHz for the

hydrodynamic instability. Mode 2 contains about 12% of the total

energy and has similar structures similar cases 9 and 21, except in the

downstream region close to the centerline. Mode 3 has around 5% of

the total energy, and the distributions for the two cases are alike. The

dominant frequencies for mode 2 in the two cases are 0.61 and

0.63 kHz, respectively. Formode 3, dominant frequencies of 1.14 and

1.39 kHz are observed. The frequencies associated with the

recirculating flow downstream of the injector exit are 0.65 and

1.29 kHz, respectively. Hence, modes 2 and 3 can be attributed to

excitation by the processing vortex core. In short, modes 1–3 capture

similar physical characteristics in the dominant PODmodes with the

same order resulting from the eigen-decomposition. The similarity of

POD modes among cases in the same cluster justifies the two

fundamental assumptions of KSPOD stated on Sec. I.

Figure 5 shows the accumulated energy percentage of the density

POD modes for the cases presented in Fig. 3. The first 150 modes

contain over 90% of the total energy, and the first 300 modes have

over 99.9% of the energy. The latter is sufficient to cover the energy

spectrum of the density field and thus selected for the KSPOD

analysis. KSPOD builds a posterior model based on the basis

functions ranked by the eigen-decomposition. As such, the reduced

data sets (i.e., the dominant modes) capture the significant flow

structures and their dynamic characteristics for the same rank.

The 30 cases selected byDoE have different inlet velocities, which

generate different instability wave speeds. Phase information,

however, cannot be reproduced perfectly, due to the presence of

turbulence. If two designs with similar dynamicmechanisms, such as

cases 4 and 6, have phase differences of 90° or 180°, the prediction

results may be excessively smoothed by traditional kriging. If the

weighting parameters evaluated by kriging for these two cases are

close, and their instability waves are exactly out of phase, the wave

information cancels out. To avoid this situation and ensure the two

main assumptions proposed in this paper viable, the POD signs have

to be manually checked. In the current study, there are only few cases

that require to be adjusted manually. Once the sign of a PODmode is

changed, the corresponding coefficient must be modified as well.

This manual work is performed before the kriging process to ensure

that no wave information will be canceled out after applying the

weighting parameters. One of our future objectives is to improve the

emulation technique without manually changing the sign of POD

modes and coefficients. As such, KSPOD applies a weighting

function for the POD modes to ensure that similar POD modes in

different cases can retain appropriate phase information.

Figure 6 shows excellent comparison between the simulation

result and prediction from the trained emulator for test case A1. The

design parameters are given in Table 5. The KSPOD-based emulator

works well; it is able to capture essential flow structures successfully.

The evolution of the liquid film and its spreading downstream of the

injector exit also agree well between the simulation and emulation.

The overall turnaround time for emulation prediction, excluding data

loading and training, is about 42 s of CPU time for one snapshot.

Table 6 lists the contribution of POD modes from each case. The

weighting parameter is calculated based on the test case A1. It is

noted that cases 17 and 30 provide, respectively, 91.77% and 13.37%

weighting,whereas cases 5, 10, 22, and 28 provide over 10%negative

weights on A1.
Figure 7 shows prediction results for the four different design

clusters, in each of which two test cases are considered. The flow

structures and dynamics are well captured by the emulator. In case

C1, the corner recirculation near the headend of the injector is clearly

observed. The discrepancy caused by time delay is present in cases

A1 and B2. In A1, the traveling surface wave in the injector

propagates downstream slightly faster in the simulation than in the

emulation.

C. Analysis of Prediction with Performance Measures: Film Thick-

ness and Spreading Angle

To further evaluate the accuracy of the KSPOD-based emulation,

two performance measures, film thickness and spreading angle, are

assessed. Table 7 presents a comparison of the time-mean simulation

and emulation (prediction) results, obtained by averaging the

instantaneous data over a statistically meaningful time duration. The

error is calculated as follows.

εabs �
jxsim − xemuj

xsim
× 100% (7)

where xsim represents data from simulation and xemu from emulation.

Asmost training cases are located in clusters A andB, the predictions

are more robust within these two clusters.
The probability densities of instantaneous spreading angle and

liquid film thickness for four selected training cases in cluster A are

obtained from the estimated kernel smoothing function, as shown in

Fig. 8. A kernel distribution is a nonparametric representation of the

probability density function, fh�x�, of a random variable, written as

Table 7 Film thickness and spreading angle for simulation and
emulation results

Spreading angle Film thickness

Case Simulation Emulation εabs,% Simulation Emulation εabs,%

A1 52.85 52.92 0.14% 0.629 0.625 0.51%
A2 52.57 51.96 1.15% 0.637 0.657 3.14%
B1 54.22 53.66 1.02% 0.582 0.600 3.03%
B2 53.81 53.87 0.12% 0.594 0.592 0.40%
C1 57.68 57.71 0.05% 0.469 0.473 0.85%
C2 57.78 57.74 0.06% 0.475 0.472 0.63%
D1 59.00 58.03 1.64% 0.379 0.378 0.26%
D2 61.59 61.33 0.41% 0.370 0.377 1.97%

Fig. 8 Probability densities of instantaneous spreading angle and liquid
film thickness for cases 4, 11, 28, and 29 from cluster A. Vertical lines
represent mean values.
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fh�x� �
1

nh

Xn
i�1

K
�
x − xi
h

�
(8)

where n is the sample size,K�⋅� the density smoothing function, and

h a smoothing parameter named bandwidth. The distributions of

probability density for cases in the same cluster bear close

similarities, but do not collapse.
Figure 9 compares the probability density distributions of

spreading angle and liquid film thickness between simulations and

emulations for all test cases. The vertical lines represent mean values.

Detailed information about mean values, standard deviations, and

averaged absolute error εabs is given in Table 7. The maximum

absolute errors for liquid film thickness and spreading angle are

1.64% in case D1 and 3.14% in case A2, respectively. The liquid film

thicknesses are relatively small in clusters C andD, and so their mean

values visually overlap each other.

Another way tomeasure the performance of the emulation is based

on the distribution of liquid film thickness along the axial direction.

Figure 10 shows a comparison between the simulation and emulation

results, averaged over 1000 snapshots. Figure 11 shows the absolute

error between simulations and emulations. The horizontal lines

represent averaged absolute error εabs for each test case. Overall, the
liquid film thickness predicted by the KSPOD-based emulation has

an averaged error less than 5%, except for case B2, which has

εabs � 6.4%. Cases with higher inlet velocities have less variation for

Fig. 9 Probability densities of instantaneous spreading angle and liquid film thickness for test cases. Vertical lines represent mean values.
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the liquid film thickness near the injector exit. The first local
maximum of error occurs in the LOX inlet area, the region that
contains the highest momentum and kinetic energy. The second peak
of error takes place when the flowfield is still developing. The large
error along the axial direction in case B2 can be attributed to the fact
that this case is close to the boundary between clusters B and C, and
includes more flow mechanisms that are prominent in the cases in
cluster C. The 30 cases used for model training aremostly distributed
in clusters A and B. If the 30 training cases had space-filling
properties with respect to inlet velocities, the prediction error could
be decreased and the quantitative analysis for test cases B2, C1, and
C2 could be improved.

IV. Conclusions

This study develops statistical methods for building an efficient
and reliable emulation (surrogate) model for the prediction of
spatiotemporal flow dynamics. The emulation method is constructed
on a kernel-smoothed POD (KSPOD) technique, which leverages
kriging-based weighted functions from the design matrix. As an
example, the spatiotemporal flow evolution in a swirl injector is
investigated over a wide range of design parameters and operating
conditions. The KSPOD-based emulation model is validated against
high-fidelity simulation results obtained from large-eddy simulation.
The model not only preserves key physical mechanisms underlying
the flow evolution, but also quantitatively captures the dynamics over
a wide range of temporal and spatial scales of concern. The KSPOD-
based emulation model has successfully reproduced some flow
dynamics information, including liquid film thickness and spreading

angle with good accuracy (most errors are under 2%). Qualitatively,
the KSPOD prediction flow fields perform nice visualization results
with detailed vortex structures. In addition, the model enables
effective design surveys using high-fidelity simulation data,
achieving a turnaround time for evaluating new design points that
is 42,000 times faster than the original simulation.
Based on the current results, further investigation is necessary to

improve the emulation model, data reduction, and feature extraction
of flow dynamics. The KSPOD could also be combined with
common proper-orthogonal-decomposition techniques to mitigate
the uncertainties of prediction for a broad-range design space. Future
works will aim at further decreasing uncertainties and errors of the
surrogate model. Moreover, the use of artificial neural networks
could potentially be employed if an activation function that properly
treats the physics of the problem can be identified. More effective
incorporation of physical knowledge for model tuning should also be
explored and implemented.

Appendix: Interpretation as a Nadaraya-Watson Kernel
Smoother

Suppose that simulations are conducted at various design
geometries c � fc1; : : : ; cng, and it is assumed that the true function
W�c� is a realization from a stochastic process

W�c� � μ� Z�c� (A1)

where c is an n-dimentional vector (with d design variables), μ a
constant global model, and Z�c� a local deviation from the global

Fig. 10 Comparison of liquid film thickness along the axial direction, averaged over 1000 snapshots.

Fig. 11 Error for liquid film thickness along the axial direction.
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model with zeromean. Consider the kriging of the indicator vector ei,
an n-vector with unity in the ith entry, and zero elsewhere. There is
another vector ri, where i � 1; : : : ; p and p is the number of control
settings for design cases. Because a space-filling design is employed,
it is easy to show that the optimal correlation parameters for the
underlying Gaussian process should be equal for all p dimensions.
Denote this common correlation as θ. When the number of design
points n → ∞, one can show that θ → ∞ as well, because the
“kriging surface” for ei converges pointwise to a discontinuous
surfacewith value 1 at ri and 0 elsewhere. The kriging estimate ei for
a new design setting rnew is

ŵnew;i � μ̂� rTnewR
−1�ei − μ̂1n� (A2)

where μ̂ � �1TnR−11n�−11TnR−1, ei � R−1
ii ∕

P
n
i�1 R

−1
ii , R≡

Corr�Z�ci�; Z�cj�� are n × n correlation matrices, and ŵnew;i a
weighted number based on kriging. When θ → ∞ and n → ∞, the
best linear unbiased predictor estimator μ̂ → 0; when θ → ∞, the
inverse correlation matrix R−1 converges elementwise to In. Under
these two approximations, we get a new kernel

kθ�ci; cnew� � ŵnew;i ≈ rTnewR
−1ei � expf−θkci − cnewk22g (A3)

where k ⋅ k2 is the Euclidean norm. In other words, ŵnew;i is the
isotropic Gaussian kernel kθ�ci; cnew�. The proposed predictor of the
first kth mode at the new design setting cnew is

ϕ̂k
new�x� �

P
n
i�1 ŵnew;iϕ

k
i �x�P

n
i�1 ŵnew;i

≈
P

n
i�1 kθ�ci; cnew�ϕk

i �x�P
n
i�1 kθ�ci; cnew�

(A4)

where ϕk
i �x�, i � 1; : : : ; n—the kth POD mode at design setting ci.

With kriging over kmodes, the new POD coefficient is defined as

β̂knew�x; t� � �β̂k1; β̂k2; : : : ; β̂k10d� (A5)

and the corresponding POD expansion using kth modes (i.e., the
prediction) is given by

f̂new�x; t� �
X∞
k�1

β̂knew�x; t�ϕ̂k
new�x�

�
X∞
k�1

βknew�x; t��
P

n
i�1 kθ�ci; cnew�ϕk

i �x��
�Pn

i�1 kθ�ci; cnew��2
(A6)

Equation (A3) can be seen as a kernel smoother on the observed
modes fϕk

i �x�gni�1 and coefficients fβki �x; t�gni�1.
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